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Abstract - In this paper we will compare the frequency 
domain behavior of the basic classes of polynomial low-pass 
filters with critical monotonic amplitude characteristics (CMAC), 
and Chebyshev filters. We will present phase and group delay 
characteristics of these filters, and also phase correctors’ 
configurations that will be used to improve these characteristics, 
i.e. to reduce distortions of group delay.  Conclusions as to which 
solution is preferable in a proper situation will be offered. 
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I. INTRODUCTION 
 

In the available literature, there have not existed 
systematical comparisons of CMAC filters and their 
analogue with non-monotonic amplitude characteristic, 
known as Chebyshev filter [1]. If we want to compare them 
properly, we need to do that from several aspects: first, 
from the selectivity point of view; then, we can study their 
frequency domain characteristics, such as amplitude, phase, 
group delay, and finally, we can study their time domain 
characteristics. So, after these analyses, we expect to obtain 
answers to very interesting question: “Which characteris-
tics are better, CMAC or Chebyshev?” 

In this paper we will engage ourselves only in 
frequency characteristics of the basic classes of polynomial 
low-pass filters with critical monotonic amplitude 
characteristics, here referred to as CMAC, and Chebyshev 
filters. 

Critical monotonic functions have the property that the 
amplitude characteristic in the pass-band has monotonic 
character with maximal number of inflection points. Also, 
it is need that amplitude characteristic has maximal number 
of inflexion points, with different abscissae. In that way, 
the first derivative of amplitude characteristic is equal to 
zero for maximum number of times, without changing its 
sign, meaning that its value is limited, and the sensitivity of 
the amplitude characteristic to changes of circuit 
parameters is reduced.  

This is applied to four basic classes of CMAC filters 
[2]:  

1. Maximally flat in the origin. This means all 
derivatives of Ln(ω2) at the origin are to be zero.  
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after the author [3]. These will be here referred to as B- 

The class of filters thus obtained is called Butterworth`s 
after the author [2]. These will be here referred to as B-
filters. 

2. Maximum slope of the characteristic function at the 
edge of the pass-band. The class of filters so obtained is 
called L-filters and was introduced by Papoulis [4], [5]. 
The name L comes from the fact that in the original 
derivation Legendre polynomials were used. In some 
references [6] it is stated as “optimal filters” which is 
arbitrary. 

3. Maximum asymptotic attenuation. This means the 
higher order coefficient in Ln(ω2) has to be maximal. This 
class of filters was introduced by Halpern [7]. These will 
be here referred to as H-filters. 

4. Least-squares-monotonic. In this case the returned 
power in the pass-band was minimized under the critical 
monotonicity criterion. This class was introduced by 
Raković and Litovski [8] and named LSM filters. 

The paper is structured as follows: In the second 
chapter we will first give attenuation characteristics of both 
CMAC and Chebyshev filters, and then phase and group 
delay characteristics. In order to correct nonlinearities in 
the group delay characteristics, phase corrector structures 
are proposed in the third chapter. Finally, conclusions are 
given. 

 
II. CMAC AND CHEBYSHEV FILTER 

CHARACTERISTICS 
 

The main contribution of this paper is to present for the 
first time phase and group delay characteristics of CMAC 
filters.  

 
 

 
Figure 1. Attenuation characteristics of 7th order CMAC filters, 

and attenuation characteristics of Chebyshev filter with 1dB 
attenuation in the pass-band 
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In order to properly estimate these characteristics, we 
will also analyze Chebyshev filter with 1dB attenuation in 
the pass-band, what is average attenuation value of CMAC 
filters. We will consider here only 7th order filters. 

If we analyse both filter types, aiming to compare these 
characteristics and to decide what filter to choose (or what 
approximation function to choose), we must consider 
several filter characteristics that participate in this choice, 
such as: time domain characteristics, sensitivity to the 
change of parameter values, what will not be considered in 
this paper, but in some of our future papers. 

First, we will induce some definitions in order to 
present how frequency characteristics of the mentioned 
filters are obtained.  

Attenuation characteristics of CMAC filters of 7th order, 
as well as Chebyshev characteristics are presented in Fig. 
1. We can notice that Chebyshev filter, as it is defined, has 
1dB attenuation at cut-off frequency, but other filters have 
3dB attenuation.  

However, in the pass-band, Chebyshev filter has larger 
attenuation at lower frequencies, what can be a 
disadvantage in the situations when the power density of 
the signal spectrum is larger at the lower frequencies (e. g. 
voice transmission). In such situations one needs to use 
either CMAC or Chebyshev filters with considerably lower 
attenuation in the pass-band, what causes a considerable 
reduction of selectivity, leading to increase of filter order 
for the sake of preserving selectivity.   

Attenuation in the stop-band of the mentioned filters is 
presented in Figure 2. We can notice that from the 
selectivity point of view, Chebyshev filter dominates.  

 

 
Figure 2. Attenuation characteristics of CMAC and Chebyshev 

filters in the stop-band 
 
Phase characteristics of the above-mentioned filters are 

presented for the first time in Figure 3. It is known, but we 
can also see, that from the graphical presentation of the 
phase characteristic we can hardly conclude anything about 
phase distortions, so we usually use group delay 
characteristics.  

They are presented in Figure 4. It is very noticeable 
here that Chebyshev filter exhibits large distortions of 
group delay, and also, that group delay is the least distorted 
by LSM and Butterworth filter.  

III. PHASE CORRECTORS FOR LSM  
AND CHEBYSHEV FILTERS 

 
By observing the group delay characteristics of the 

filters, we can deliver conclusions about phase corrector 
complexity that could be eventually used to correct phase 
delay characteristic, and also, about overall complexity of 
the cascade- filter+corrector.    

 
 

Figure 3. Phase characteristics of the 7th order CMAC and 
Chebyshev filters 

 
Figure 4. Group delay characteristics of CMAC and 

 Chebyshev filters 
 
As an example in this paper, we will use pair LSM-C 

(Chebyshev). From the filter theory, we can calculate the 
value of the highest coefficient in the square of the 
polynomial in the denominator of the amplitude 
characteristics of the 7th order Chebyshev filter with 1dB 
attenuation, and it is (a2n=a14)Chebyshev=1060.56. It rep-
resents the rate of asymptotic attenuation of the filter, i.e. 
its selectivity by Halpern criterion. Accordingly, 
asymptotic attenuation of this filter will be determined by 
1060.56∙ω14. LSM filter of the 9th order, whose highest 
order coefficient is (a2n=a18)LSM=154.68, has almost the 
same selectivity, so that asymptotic attenuation is 
determined by 154.68∙ω18. Amplitude characteristics of 
these filters are shown in Figure 5, where we can see that 

Normalized angular frequency 

Phase + π (radian) 



we chose LSM filter with better attenuation characteristics 
in the pass-band, and almost the same in the stop-band.  

If we realize these filters as passive ladder structures, 
this LSM filter would have two elements more (one 
inductor and one capacitor). 

 

 
a) 

 

 
b) 

Figure 5. a) Attenuation in the stop-band and  
b) Attenuation in the pass-band of 7th order Chebyshev filter  

 (1 dB, renormalized) and of 9th order LSM filter  
 
 

If we design, for the two above-mentioned filters, phase 
correctors that should lead to small group delay error in 
greater part of the pass-band, considering the literature ([9], 
[10], [11]), we can expect that Chebyshev filter requires 
phase corrector whose order is for 2 higher than LSM filter 
corrector order (the optimum case-for Chebyshev). In the 
passive realization, considering complex zeroes, corrector 
cell has at least 5 elements, thereby using at least one 
transformer [12]. If we consider active cascade RC 
realization, extension of LSM filter would be achieved 
using 3rd order cell (Sallen-Key, for example), that realizes 
only zeroes in the infinity, but the extension of Chebyshev 
filter would require complex cell with noticeably greater 
number of elements (Tow-Thomas, for example).   

As an illustration of this claim, we will consider 
complex filters obtained by cascade of the filter (CMAC or 
Chebyshev) and phase corrector. In order to obtain a fair 
comparison, we will use 9th order LSM filter and 7th order 
Chebyshev filter that is renormalized so that its amplitude 

characteristics achieves 3dB at cut-off frequency. This can 
be seen in Figure 1.  

Comparison given in this paper is the first of that kind, 
and it could not be found in existing literature. This 
includes also the following examples.  

 
 

 
 

Figure 6. 7th order Chebyshev filter with 8th order corrector.  
Group delay (up) and error in approximation of constant group 

delay (down) 
 
 

 
 

Figure 7. 9th order LSM filter with 6th order corrector. Group 
delay (up) and error in approximation of constant group delay 

(down) 
 

If it is required that group delay is constant in the entire 
pass-band with 10% relative error, we obtain filters with 
characteristics presented in Figs. 6 and 7. Group delays and 
corresponding relative deviations are presented in these 
figures.  

In Figure 6 these data are given for 7th order Chebyshev 
filter. In order to obtain approximation of constant group 
delay in the entire pass-band with 10% relative error, we 
needed 8th order corrector. According to theory, in ideal 
case, the value of group delay in pass-band should be: 
π∙(n+2∙k)/2= π∙(7+2∙8)/2=36 s. 

Here, n is order of the filter, k is order of the corrector. 
The value (τd_mean)Chebyshev=31.28s, obtained by approxi-
mation is less because the part of the area under the group 
delay curve outspreads outside the pass-band. We should 



have in mind that with this corrector complexity, we cannot 
obtain group delay approximation in the entire pass-band, 
but this result is accepted as satisfactory.  

Figure 7 represents group delay and relative deviations 
of the corrected 9th order LSM filter. In order to obtain 
approximation of constant group delay in the entire pass-
band with 10% relative error, we needed 6th order 
corrector. This approximation is a bit better than the one in 
the Figure 6, but that is not of the big importance. Mean 
value of group delay of this combination is less than in the 
case of Chebyshev filter, and it is (τd_mean)LSM=24.77s. So, 
we conclude that the combination LSM filter+corrector 
would have smaller delay (in this case 21%) than the 
combination Chebyshev filter+corrector (that was reference 
when calculating relative deviation). Also, it is obvious that 
the condition that error of the group delay is smaller or 
equal 10% is easily fulfilled.   

So, we can consider that in this way we obtained two 
filters with approximately same selectivity and 
approximately same group delay, but the corrected LSM 
filter exhibits less amplitude distortion in the pass band and 
smaller delay.  

 
IV. CONCLUSION 

 
In this paper we presented phase and group delay 

characteristics of CMAC filters for the first time. We used 
also Chebyshev filters frequency characteristics as a 
referent example for comparison.   

We used pair the LSM- Chebyshev filter in the 
filter+corrector cascade to explore which combination 
would give better results, so we concluded that filters had 
almost the same selectivity, but the corrected LSM filter 
exhibited smaller delay and less amplitude distortion in the 
pass band. 
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